Machine learning in hindi

सुनने में तो ये बहुत ही technical term लगता है. लेकिन अगर आप इसके बारे में ठीक से समझ जाएँ तब ये बहुत ही आसान का funda है जिसे आजकल प्राय सभी जगहों में इस्तमाल में लाया जाता है.यह एक ऐसी प्रकार की learning है जिसमें machine खुब्खुद बहुत सी चीज़ें सिख लेता है बिना उसे explicitly programmed किये. यह एक प्रकार का application होता है AI (Artificial Intelligence) का जो की system को ये ability प्रदान करता है जिससे वो automatically अपने experience से ही learn करें और अपने आप को improve करें.

सुनने में भले ही यह मुमकिन न लगे लेकिन ये सच है क्यूंकि आजकल AI इतना ज्यादा advanced हो गया है की जिससे ये Machines को ऐसे बहुत से काम करा सकता है जो की पहले सोचा पाना भी मुमकिन नहीं था.

चूँकि Machine Learning से dynamic environment में multi-dimensional और multi-variety data को आसानी से handle किया जा सकता है इसलिए इसके विषय में पूरी जानकारी प्राप्त करना सभी Technical Students के लिए बहुत जरूरी है.

Machine Learning के ऐसे हजारों advantages हैं जिन्हें की हम अपने दैनिक कार्यों में इस्तमाल में लाते हैं. इसलिए आज मैंने सोचा की क्यूँ न आप लोगों को Machine Learning क्या है और ये कैसे काम करता है के विषय में जानकारी प्रदान करूँ जिससे आपको इसे और बेहतर रूप में समझने में आसानी होगी. तो बिना देरी किये चलिए शुरू करते हैं और मशीन लर्निंग क्या होता है के विषय में जानते हैं.

Machine learning जैसे की मैंने पहले ही बताया है की यह एक प्रकार का application होता है artificial intelligence (AI) का जो की systems को यह ability प्रदान करता है की जिससे वो automatically learn कर सकें और जरूरत पड़ने पर खुद की improve भी कर सकें.

ऐसा करने के लिए वो अपने experience को ही काम में लाते हैं न की उन्हें explicitly programmed किया जाता है. Machine learning हमेशा Computer Programs के development पर focus करता है जिससे वो data को access कर सके और बाद में उसे खुद के learning के लिए इस्तमाल कर सके.

इसमें learning data के observations से शुरू होता है, उदहारण के लिए direct experience, या instruction, data में patterns को ढूंडना और भविस्य में बेहतर decisions लेने में आसानी हो.

Machine Learning का मुख्य लक्ष्य है कैसे computers automatically learn करें बिना किसी human intervention या assistance के जिससे वो अपने actions को उस हिसाब से adjust कर सके.

Machine Learning Algorithms के प्रकार

Machine learning algorithms को अक्सर कुछ category में बांटा जाता है. चलिए इसके विषय में और उनके types के बारे में जानते हैं.

1.  Supervised machine learning algorithms: इस प्रकार के algorithm में Machine अपने past में जो सीखा हुआ होता है उसे यह नए data में apply करता है जिसमें वो labeled examples का इस्तमाल करते हैं जिससे वो future events को predict कर सकें.

एक known training dataset के analysis से ये learning algorithm एक प्रकार का inferred function पैदा करता है जो की आसानी से predictions कर सकता है output values के विषय में.

System किसी भी नए input के लिए target provide कर सकती है उन्हें sufficient training देने पर. ये learning algorithm भी निकले हुए output को compare करती है correct, intended output के साथ और errors को ढूंडती हैं जिससे ये model को उसी हिसाब से modify कर सकें.

2.  Unsupervised machine learning algorithms: इन algorithms का तब इस्तमाल किया जाता है जब information जिसे train किया जाये न ही classified हो और न ही labelled हो.

Unsupervised learning ये study करती है की कैसे systems किसी function को infer कर सकें जिससे वो unlabeled data से किसी hidden structure को describe कर सकें.

ये system किसी right output को नहीं describe करती है, लेकिन ये data को explore करती है और उनके datasets से ये inference draw करती हैं की जिससे ये hidden structures को describe कर सकें unlabeled data की मदद से.

3.  Semi-supervised machine learning algorithms: ये algorithm दोनों supervised और unsupervised learning के बीच आता है. चूँकि ये दोनों labelled और unlabeled data का इस्तमाल करते हैं training के लिए – typically जो की होता है small amount of labelled data और a large amount of unlabeled data.

वो systems जो की इस method का इस्तमाल करते हैं वो बड़ी ही आसानी से considerably learning accuracy को improve कर सकते हैं.

Usually, semi-supervised learning को तब choose किया जाता है जब acquired labelled data को जरुरत होती है skilled और relevant resources की जिससे ये उन्हें train कर सके और उनसे learn भी कर सके. अन्यथा, unlabeled data को acquire करने के लिए additional resources की जरुरत नहीं होती है.

4.  Reinforcement machine learning algorithms: यह एक प्रकार का learning method है जो की उसके environment के साथ interact करता है actions produce कर और साथ ही errors और rewards को discover भी करता है.

Trial and error search और delayed reward ये सभी most relevant characteristics हैं reinforcement learning के.

यह method machines और software agents को allow करता है automatically किसी भी ideal behaviour को determine करने के लिए जो की किसी specific context के भीतर हो और जिससे ये उनकी performance को maximize कर सके.